\(\int \frac {(a+b \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx\) [605]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 339 \[ \int \frac {(a+b \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\frac {\left (8 a^2 A+4 A b^2+7 a b B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{4 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (12 a A b+3 a^2 B+4 b^2 B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{4 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {(4 A b+5 a B) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{4 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}+\frac {b B \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {(4 A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 d \sqrt {\cos (c+d x)}} \]

[Out]

1/4*(8*A*a^2+4*A*b^2+7*B*a*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(
1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+1/4*(12*A*a*b+3
*B*a^2+4*B*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+
b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+1/2*b*B*sin(d*x+c)*(a+b*se
c(d*x+c))^(1/2)/d/cos(d*x+c)^(3/2)+1/4*(4*A*b+5*B*a)*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)-1/4*
(4*A*b+5*B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(
1/2))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)

Rubi [A] (verified)

Time = 1.56 (sec) , antiderivative size = 339, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3034, 4111, 4187, 4193, 3944, 2886, 2884, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {(a+b \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\frac {\left (8 a^2 A+7 a b B+4 A b^2\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{4 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (3 a^2 B+12 a A b+4 b^2 B\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{4 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {(5 a B+4 A b) \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{4 d \sqrt {\cos (c+d x)}}-\frac {(5 a B+4 A b) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{4 d \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {b B \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{2 d \cos ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[((a + b*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]))/Sqrt[Cos[c + d*x]],x]

[Out]

((8*a^2*A + 4*A*b^2 + 7*a*b*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(4*d*
Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + ((12*a*A*b + 3*a^2*B + 4*b^2*B)*Sqrt[(b + a*Cos[c + d*x])/(a +
b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)])/(4*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) - ((4*A*b + 5
*a*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(4*d*Sqrt[(b + a*Cos[
c + d*x])/(a + b)]) + (b*B*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(2*d*Cos[c + d*x]^(3/2)) + ((4*A*b + 5*a*B)*
Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(4*d*Sqrt[Cos[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3034

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Csc[e + f*x])^m*((
c + d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3944

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[d*Sqrt
[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4111

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m +
n))), x] + Dist[1/(m + n), Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n*Simp[a^2*A*(m + n) + a*b*B*n +
(a*(2*A*b + a*B)*(m + n) + b^2*B*(m + n - 1))*Csc[e + f*x] + b*(A*b*(m + n) + a*B*(2*m + n - 1))*Csc[e + f*x]^
2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] &&
 !(IGtQ[n, 1] &&  !IntegerQ[m])

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4187

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(
m + 1)*((d*Csc[e + f*x])^(n - 1)/(b*f*(m + n + 1))), x] + Dist[d/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(
d*Csc[e + f*x])^(n - 1)*Simp[a*C*(n - 1) + (A*b*(m + n + 1) + b*C*(m + n))*Csc[e + f*x] + (b*B*(m + n + 1) - a
*C*n)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 0]

Rule 4193

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx \\ & = \frac {b B \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {1}{2} \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)} \left (\frac {1}{2} a (4 a A+b B)+\left (4 a A b+2 a^2 B+b^2 B\right ) \sec (c+d x)+\frac {1}{2} b (4 A b+5 a B) \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {b B \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {(4 A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 d \sqrt {\cos (c+d x)}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {1}{4} a b (4 A b+5 a B)+\frac {1}{2} a b (4 a A+b B) \sec (c+d x)+\frac {1}{4} b \left (12 a A b+3 a^2 B+4 b^2 B\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{2 b} \\ & = \frac {b B \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {(4 A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 d \sqrt {\cos (c+d x)}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {1}{4} a b (4 A b+5 a B)+\frac {1}{2} a b (4 a A+b B) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{2 b}+\frac {1}{8} \left (\left (12 a A b+3 a^2 B+4 b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {b B \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {(4 A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 d \sqrt {\cos (c+d x)}}-\frac {1}{8} \left ((4 A b+5 a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{8} \left (\left (8 a^2 A+4 A b^2+7 a b B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {\left (\left (12 a A b+3 a^2 B+4 b^2 B\right ) \sqrt {b+a \cos (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}} \, dx}{8 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \\ & = \frac {b B \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {(4 A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 d \sqrt {\cos (c+d x)}}+\frac {\left (\left (8 a^2 A+4 A b^2+7 a b B\right ) \sqrt {b+a \cos (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{8 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (12 a A b+3 a^2 B+4 b^2 B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{8 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left ((4 A b+5 a B) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{8 \sqrt {b+a \cos (c+d x)}} \\ & = \frac {\left (12 a A b+3 a^2 B+4 b^2 B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{4 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {b B \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {(4 A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 d \sqrt {\cos (c+d x)}}+\frac {\left (\left (8 a^2 A+4 A b^2+7 a b B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{8 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left ((4 A b+5 a B) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{8 \sqrt {\frac {b+a \cos (c+d x)}{a+b}}} \\ & = \frac {\left (8 a^2 A+4 A b^2+7 a b B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{4 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (12 a A b+3 a^2 B+4 b^2 B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{4 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {(4 A b+5 a B) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{4 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}+\frac {b B \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {(4 A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 42.35 (sec) , antiderivative size = 80411, normalized size of antiderivative = 237.20 \[ \int \frac {(a+b \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\text {Result too large to show} \]

[In]

Integrate[((a + b*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]))/Sqrt[Cos[c + d*x]],x]

[Out]

Result too large to show

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 15.22 (sec) , antiderivative size = 2504, normalized size of antiderivative = 7.39

method result size
default \(\text {Expression too large to display}\) \(2504\)

[In]

int((a+b*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/4/d*(5*B*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+
c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^2+8*A*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b
)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*cos(d*x+c)^2+2*B*EllipticF(((a-b)/(a+b))^(1/2
)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)
^3-4*B*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(
cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)^3+4*A*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))
^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)^2-5*B*EllipticE(((a-b)/(a+b))^(1/2)*(co
t(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)^2+6*
B*EllipticPi(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(
d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)^2+8*B*EllipticPi(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(a+b
)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)^2+2*B*EllipticF(
((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1
/2)*a^2*cos(d*x+c)^2-4*B*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)^2-2*B*((a-b)/(a+b))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b^2*s
in(d*x+c)-4*A*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*
x+c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^2+24*A*EllipticPi(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(a+b)
/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^2+8*A*(1/(a+b)*(b
+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2
))*a^2*cos(d*x+c)^3-8*A*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x
+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b*cos(d*x+c)^2+4*A*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c
)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)^3-5*B*EllipticE(((a-b)
/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^
2*cos(d*x+c)^3+6*B*EllipticPi(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)^3+8*B*EllipticPi(((a-b)/(a+b))^(1/2)*(cot(d*x+c)
-csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)
^3-4*A*((a-b)/(a+b))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^2*sin(d*x+c)-2*B*((a-b)/(a+b))^(1/2)*(1/(co
s(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^2*sin(d*x+c)-7*B*((a-b)/(a+b))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)
*sin(d*x+c)+2*B*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(
d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^2-5*B*((a-b)/(a+b))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)
^2*sin(d*x+c)-4*A*((a-b)/(a+b))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)*sin(d*x+c)-2*B*((a-b)/(a+b))^(1/
2)*(1/(cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)*sin(d*x+c)-4*A*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)
),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^3+24*A*EllipticPi(((a-b
)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c
)+1))^(1/2)*a*b*cos(d*x+c)^3+5*B*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^3+2*B*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-
csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^3-8*A*(1/(a+b
)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^
(1/2))*a*b*cos(d*x+c)^3)*(a+b*sec(d*x+c))^(1/2)/cos(d*x+c)^(3/2)/(1/(cos(d*x+c)+1))^(1/2)/(b+a*cos(d*x+c))/((a
-b)/(a+b))^(1/2)/(cos(d*x+c)+1)

Fricas [F(-1)]

Timed out. \[ \int \frac {(a+b \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((a+b*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((a+b*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c))/cos(d*x+c)**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+b \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^(3/2)/sqrt(cos(d*x + c)), x)

Giac [F]

\[ \int \frac {(a+b \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^(3/2)/sqrt(cos(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(3/2))/cos(c + d*x)^(1/2),x)

[Out]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(3/2))/cos(c + d*x)^(1/2), x)